16. If the equation

(2005)

 $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x = 0, a_1 \neq 0, n \geq 2,$ has a positive root $x = \alpha$, then the equation $na_n x^{n-1} + (n-1)a_{n-1} x^{n-2} + \dots + a_1 = 0$ has a positive roots, which is

- 1) greater than α
- 2) smaller than α
- 3) greater than or equal to α
- 4) equal to α

Ans.

(2) $f(0) = 0, f(\alpha) = 0$ and f(0) is continuous on

 $[0,\alpha]$ and differentiable on $(0,\alpha)$

 $\Rightarrow f'(k) = 0$ for some $k \in (0, \alpha)$.